MRes Geomaterials
Overview
The subject of Geomaterials is very broad, and reaches into many other topics that are investigated at the Institute of GeoEnergy Engineering. Our research seeks to understand rocks – and related materials such as concrete, soil, snow, paper, ceramics, and almost all porous materials – in terms of behaviours and properties. A key concept of research into Geomaterials is that the grain/pore-scale textural arrangements of the solid components and fluid-filled porespaces of Geomaterials determine their physical properties, while also recording the geohistory events and processes that led to their current state. To understand how such processes lead to textural evolution, Geomaterials research both interprets natural rock examples, and also conducts laboratory experiments where the processes can be replicated within controlled conditions. The Geomaterials group puts a strong emphasis on integrating imaging and measurement techniques to quantify textural evolution and the related physical states. Understanding is then transferred into simulations that allow the knowledge gained to be applied in complex settings.
Overview
The subject of Geomaterials is very broad, and reaches into many other topics that are investigated at the Institute of GeoEnergy Engineering. Our research seeks to understand rocks – and related materials such as concrete, soil, snow, paper, ceramics, and almost all porous materials – in terms of behaviours and properties. A key concept of research into Geomaterials is that the grain/pore-scale textural arrangements of the solid components and fluid-filled porespaces of Geomaterials determine their physical properties, while also recording the geohistory events and processes that led to their current state. To understand how such processes lead to textural evolution, Geomaterials research both interprets natural rock examples, and also conducts laboratory experiments where the processes can be replicated within controlled conditions. The Geomaterials group puts a strong emphasis on integrating imaging and measurement techniques to quantify textural evolution and the related physical states. Understanding is then transferred into simulations that allow the knowledge gained to be applied in complex settings.