PhD Parasitology
Our portfolio covers many aspects of parasitology research from molecules to cells and whole organisms to populations. Research activities are based around skills in molecular biology, biochemistry, immunology, epidemiology, population genetics and mathematical modelling and involve both laboratory-based projects and fieldwork.
Overview
Parasites are fascinating organisms, because of their capacity to live and replicate within the host environment. How parasites adapt and survive is the focus of much study with the potential to generate new and important discoveries that can impact upon control. Most organisms harbor parasites and much of our research is aimed at understanding how parasites cause disease and how best to control disease in both humans and animals. Improving upon existing treatments and understanding mechanisms of drug resistance are important aspects of this work. In addition, the epidemiology, ecology and population genetics of parasitic pathogens are important areas of research that significantly impact upon transmission and control.
Our research portfolio covers a range of tropical parasites that cause important diseases, including Plasmodium ssp (malaria), Trypanosoma ssp (sleeping sickness), Leishmania ssp (leishmaniasis) and Theileria (East coast fever/theileriosis), along with filarial worms, the cause of elephantiasis. We also study parasites that are endemic in the UK such as Toxoplasma gondii and important gastro-intestinal parasites of livestock that cause significant economic loss to the agricultural industry and are important for global food security. Many important parasites are transmitted by vectors, and we have growing strengths in vector biology, most notably mosquitoes and ticks. We aim to apply our findings to informing control programmes and to translate our findings into better diagnostics, drugs and vaccines.
Students undertake individual research projects in the area of expertise of their supervisor(s), although many projects on offer are interdisciplinary.
Your choice of projects is diverse, reflecting the range of expertise of potential supervisors. The University of Glasgow provides an excellent environment for parasitology research, housing the largest group of parasitologists in the UK, studying all aspects of parasitic disease from gene to population. Parasitology is housed within two institutes, Infection, Immunity and Inflammation and Biodiversity, Animal Health and Comparative Medicine. In addition, many of the group are members of the Wellcome Centre for Integrative Parasitology. The resources available provide the opportunity for excellent and cutting edge training in many different areas. These include molecular biology, biochemistry, ecology, epidemiology, mathematical modelling, bioinformatics, genetics, cell biology (including advanced in vitro and in vivo imaging), immunology and polyomics (genomics, transcriptomics, proteomics, metabolomics etc). Many projects are laboratory-based in up-to-date facilities with excellent research resources. Interdisciplinary research is a key aspect of our approach and we have many collaborators both within the university and externally. Some projects involve considerable amounts of fieldwork in the UK or overseas.
Our portfolio covers many aspects of parasitology research from molecules to cells and whole organisms to populations. Research activities are based around skills in molecular biology, biochemistry, immunology, epidemiology, population genetics and mathematical modelling and involve both laboratory-based projects and fieldwork.
Overview
Parasites are fascinating organisms, because of their capacity to live and replicate within the host environment. How parasites adapt and survive is the focus of much study with the potential to generate new and important discoveries that can impact upon control. Most organisms harbor parasites and much of our research is aimed at understanding how parasites cause disease and how best to control disease in both humans and animals. Improving upon existing treatments and understanding mechanisms of drug resistance are important aspects of this work. In addition, the epidemiology, ecology and population genetics of parasitic pathogens are important areas of research that significantly impact upon transmission and control.
Our research portfolio covers a range of tropical parasites that cause important diseases, including Plasmodium ssp (malaria), Trypanosoma ssp (sleeping sickness), Leishmania ssp (leishmaniasis) and Theileria (East coast fever/theileriosis), along with filarial worms, the cause of elephantiasis. We also study parasites that are endemic in the UK such as Toxoplasma gondii and important gastro-intestinal parasites of livestock that cause significant economic loss to the agricultural industry and are important for global food security. Many important parasites are transmitted by vectors, and we have growing strengths in vector biology, most notably mosquitoes and ticks. We aim to apply our findings to informing control programmes and to translate our findings into better diagnostics, drugs and vaccines.
Students undertake individual research projects in the area of expertise of their supervisor(s), although many projects on offer are interdisciplinary.
Your choice of projects is diverse, reflecting the range of expertise of potential supervisors. The University of Glasgow provides an excellent environment for parasitology research, housing the largest group of parasitologists in the UK, studying all aspects of parasitic disease from gene to population. Parasitology is housed within two institutes, Infection, Immunity and Inflammation and Biodiversity, Animal Health and Comparative Medicine. In addition, many of the group are members of the Wellcome Centre for Integrative Parasitology. The resources available provide the opportunity for excellent and cutting edge training in many different areas. These include molecular biology, biochemistry, ecology, epidemiology, mathematical modelling, bioinformatics, genetics, cell biology (including advanced in vitro and in vivo imaging), immunology and polyomics (genomics, transcriptomics, proteomics, metabolomics etc). Many projects are laboratory-based in up-to-date facilities with excellent research resources. Interdisciplinary research is a key aspect of our approach and we have many collaborators both within the university and externally. Some projects involve considerable amounts of fieldwork in the UK or overseas.