MSc(Res) Cancer Medicine

The MSc(Res) in Cancer Medicine will provide students with new knowledge of how precision medicine can improve and shape future healthcare. Students will gain hands-on experience of molecular techniques and the equipment/devices used in a modern molecular laboratory; the course will provide training in laboratory and research skills that are applicable across multiple scientific disciplines in a supportive learning environment. Central to this research-intensive programme is a 24-week Research Project (which runs throughout both semesters) where students undertake hands-on research training within active research teams. Through taught modules students will be able to evaluate how novel therapeutic approaches can be used to stratify patients into treatment groups for better clinical management (stratified / precision medicine). They will observe the delivery of precision medicine through tours of the Northern Ireland Cancer Centre.

There are optional modules in the second semester allowing students to explore the fundamental principles of carcinogenesis and the translational approaches (including cutting edge technologies) which allow cancer scientists and clinicians to advance our understanding and treatment of cancers.

The Precision Cancer Medicine stream provides a comprehensive overview of the current understanding of the hallmarks of cancer from the role of genetic/epigenetic alterations, cell cycle control and metastases/angiogenesis to the development of applications to help diagnose cancers earlier, improve treatments, rationally design clinical trials and reduce chemotherapy drug resistance.

The Radiation Oncology stream will develop skills in understanding the biological principles of radiotherapy and its clinical applications in the treatment of cancer. This will include the physical and chemical basis of radiation interactions and the biological consequences of radiation exposures. Clinical aspects of Radiation Oncology will be covered including principle of advanced radiotherapy delivery, cancer imaging techniques and biomarker discovery.

The Oncology Drug Discovery stream will give an insight into both academic and biotech drug development. The course will provide an understanding of what makes an interesting anti-cancer drug target and how, as researchers, we validate this target for clinical use. In addition, you will also gain an understanding of the different drug development platforms that are currently employed for hit identification, hit to lead development and pre-clinical candidate selection.

Importantly, all streams show how our improved understanding of the molecular processes driving cancer growth and spread can be ‘translated’ through research-intensive MSc projects to improve the treatment and survival of cancer patients.

Applicants are advised to apply as early as possible and ideally no later than 31st July 2023 for courses which commence in late September. In the event that any programme receives a high number of applications, the University reserves the right to close the application portal. Notifications to this effect will appear on the Direct Application Portal against the programme application page.

Please note a deposit will be required to guarantee a place on the course. Due to high demand, applications may not be considered if the course has reached its maximum class size and will be placed on a waiting list. Please see deposit terms and conditions for more details.

Read more

Modules

  • Diagnosis and Treatment of Cancer
  • Cancer Biology
  • 1) Precision Cancer Stream
  • Cancer Genetics & Genomics
  • Translational Cancer Medicine
  • 2) Radiation Oncology and Medical Imaging Stream (ROMI)
  • Biology of Radiotherapy
  • Clinical Radiation
  • 3 Oncology Drug Discovery Stream (ODD)
  • Target Identification and Hit ID
  • Lead optimization, drug delivery and clinical trials
  • Dissertation
  • £25,800 Per Year

    International student tuition fee

    1 Year

    Duration

    Sep 2024

    Start Month

    Aug 2024

    Application Deadline

    Upcoming Intakes

    • September 2024
    • September 2025

    Mode of Study

    • Full Time