MSc (Research) Cell Engineering
We are focused on fostering education and training in research to develop microenvironments to investigate and instruct cellular behaviour including, but not solely, stem cell differentiation. Our cell engineering research covers topics such as protein folding in the secretory pathway, regulation of membrane traffic, control of cell cycle, cytokinesis, compartmentalization of cellular signalling and cell engineering.
Overview
The Centre for the Cellular Microenvironment at Glasgow is a new entity (2018) arising from the merger of the Centre for Cell Engineering (CCE) and the Microenvironments for Medicine (MiMe).
Our goal is to apply the knowledge gained from our research to address key issues affecting (stem) cell biology. Our research is centred on exploring how cells respond to their environment by changes in behaviour, differentiation, metabolism and various aspects of development.
The Centre for the Cellular Microenvironment at Glasgow adopts an interdisciplinary approach across the Institute of Molecular, Cell & Systems Biology (MCSB) in the College of Medical, Veterinary & Life Sciences and the Bioengineering Group in the School of Engineering, which is part of the College of Science & Engineering. Cell-environment interactions, cell signalling, stem cell biology, cell, and protein structure and function at interfaces, bioengineering of gene regulation by microenvironments, nanoparticle technologies, synthetic biology to guide cell adhesion, cell sorting and translational approaches to take finding to clinical application.
Research topics are allied to ongoing research within the Centre for the Cellular Microenvironment. Some projects are related to basic science and other projects are more focused on translational aspects of our research, but all projects integrate with our existing research themes. A variety of multidisciplinary research approaches are applied within these research programmes, including biomedical engineering, protein engineering, biochemistry, molecular biology, biophysics, polyomics (genomics, transcriptomics, proteomics, metabolomics), biomaterials, bioinformatics and synthetic biology, as well as cellular imaging of biological functions.
We are focused on fostering education and training in research to develop microenvironments to investigate and instruct cellular behaviour including, but not solely, stem cell differentiation. Our cell engineering research covers topics such as protein folding in the secretory pathway, regulation of membrane traffic, control of cell cycle, cytokinesis, compartmentalization of cellular signalling and cell engineering.
Overview
The Centre for the Cellular Microenvironment at Glasgow is a new entity (2018) arising from the merger of the Centre for Cell Engineering (CCE) and the Microenvironments for Medicine (MiMe).
Our goal is to apply the knowledge gained from our research to address key issues affecting (stem) cell biology. Our research is centred on exploring how cells respond to their environment by changes in behaviour, differentiation, metabolism and various aspects of development.
The Centre for the Cellular Microenvironment at Glasgow adopts an interdisciplinary approach across the Institute of Molecular, Cell & Systems Biology (MCSB) in the College of Medical, Veterinary & Life Sciences and the Bioengineering Group in the School of Engineering, which is part of the College of Science & Engineering. Cell-environment interactions, cell signalling, stem cell biology, cell, and protein structure and function at interfaces, bioengineering of gene regulation by microenvironments, nanoparticle technologies, synthetic biology to guide cell adhesion, cell sorting and translational approaches to take finding to clinical application.
Research topics are allied to ongoing research within the Centre for the Cellular Microenvironment. Some projects are related to basic science and other projects are more focused on translational aspects of our research, but all projects integrate with our existing research themes. A variety of multidisciplinary research approaches are applied within these research programmes, including biomedical engineering, protein engineering, biochemistry, molecular biology, biophysics, polyomics (genomics, transcriptomics, proteomics, metabolomics), biomaterials, bioinformatics and synthetic biology, as well as cellular imaging of biological functions.