PhD Biological Sciences

Use our magical AI system, to check your admission chances for this course.
Tuition fee
Apply by
Start date
Sep 2025
Sep 2026
Duration
Campus
Mode of study
Fees and deadlines depend on the selected options. Fees and currency conversion are approximate.
Offer response
4 - 6 weeks after your application is submitted
Backlogs accepted
This course accepts backlogs

The School of Biological Sciences provides PhD and MPhil (research degree) programmes in subjects ranging from basic biochemistry, molecular genetics and cancer research, to agricultural science, marine ecology and the economic evaluation of ecosystem services and food retailing. If you have a topic or research question in mind, please use the Find a Supervisor link (see Apply tab) to identify the most appropriate member of staff to support your idea. If not, don't worry, we regularly advertise funded projects and there is no harm in browsing our academic staff profiles for inspiration and then contacting whoever seems best: we are very open to applications from suitably qualified people interested in scientific research. In every case, a PhD or MPhil course provides the means of being part of a cutting edge scientific research team and contributing to genuine new discoveries or the development of new methods for practical use. If you cannot study full time, we offer pro-rata part time research degree programmes as well.

There are three broad themes to research at the School:

- Agri-Food Systems and Human Nutrition
- Understanding Health and Disease
- Sustaining Ecosystems and Biodiversity

Agri-Food Systems and Human Nutrition:

This theme focuses on how Agri-Food systems can be better positioned to provide safe and healthy diets and high quality of animal products and support human and animal health in a way that is environmentally sustainable and resilient to climate change.

Underpinning these goals, the disciplinary expertise of the theme integrates basic and applied research from animal health and welfare, nutrition, performance and environmental impact (e.g. greenhouse gas emissions from livestock) to chemical contaminant detection, food microbiology, fraud detection and food systems traceability and transparency.

Supported by underpinning technological expertise in cutting edge molecular, genomic, transcriptomic/proteomic and metabolomic methods, the goal of the theme is to transform Agri-Food systems so that they benefit both human nutrition and health while simultaneously reducing the greenhouse gases emissions from livestock production systems, protecting ecological resources, supporting livelihoods and affordable foods, and upholding social, cultural, and ethical values.

Understanding Health and Disease:

The Understanding Health and Disease research theme covers humans, plants, and animals with research strengths in prevention, diagnostics, surveillance, epidemiology, and treatments. We study how health can be improved through food and nutrition and how diseases can be tackled by understanding their fundamental molecular mechanisms, including those underpinning the biology of pathogens and parasites. Our researchers work in human cancer and genetic diseases, in infections caused by bacteria, fungi, viruses, and parasites, and in how global health and disease will be affected by global warming and climate change.

We recognize that the only way to tackle the problems we face as a society is to take an interdisciplinary approach to our research. This means we have expertise in broad areas including molecular biology, biochemistry, bioinformatics, genomics, transcriptomics, modelling, bioanalytical chemistry, proteomics, metabolomics, microbiology, parasitology, and plant biology. We work internationally with researchers and partners in universities, charities, non-governmental organisations, industry, and government agencies to tackle local and global challenges.

Sustaining Ecosystems and Biodiversity:

This theme covers research in biodiversity and ecosystem services for environments ranging from tropical forests to deep oceans, using field techniques and skills such as wildlife tracking, taxonomy, geostatistics, molecular and genetic ecology, environmental microbiology, microbial ecology, food web analysis, microcosm and mesocosm experiments, and mathematical/computational methods. Within this theme we also study the behaviour and temperament of wild, agricultural or domestic animals and their implications for welfare and ability to respond to environmental change.

Potential research projects include phylogenetic analysis of rare and newly discovered species, examination of ecological interactions in tropical systems, agricultural soils, or marine communities, using state-of-the-art genetic analysis, surveys using drones or satellite tagging, or experiments in tanks and field plots, including careful and ethical examinations of animal behaviour. Projects range from theoretical analysis of stability in ecosystems, through discovery of new species and mechanisms of interaction, or responses to climate change, to the assessment of agri-environment schemes, development of new methods for commercial fisheries management and economic evaluations of conservation measures. Projects very often have an international dimension and include collaboration with other researchers worldwide.

Read more

Requirements

The requirements may vary based on your selected study options.





















The all-in-one solution for your study-abroad needs
Download the Edvoy app now

Related courses










Use our magical AI system, to check your admission chances for this course.
Tuition fee
Apply by
Start date
Sep 2025
Sep 2026
Duration
Campus
Mode of study
Fees and deadlines depend on the selected options. Fees and currency conversion are approximate.
Offer response
4 - 6 weeks after your application is submitted
Backlogs accepted
This course accepts backlogs